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Abstract. The energy-loss straggling of protons in an electron gas is calculated by using
the linear-response theory and dynamic local-field correction in the dielectric function. A
comparison of the theoretical results obtained with the predictions of density-functional theory
and experimental data is made.

1. Introduction

The energy loss of charged particles has received a great deal of attention for many years,
since it plays an important role in investigating the elemental composition, depth distribution,
and location of the lattice sites of atoms implanted in matter. The characterization of the
distribution of the energy losses suffered by energetic ions in their interaction with matter
requires two important quantities: the stopping power, and the energy-loss straggling, which
is defined as the fluctuation in the energy loss of the ion beam in matter due to the statistical
nature of the slowing-down process. Several authors [1–5] have calculated the energy-loss
straggling by use of the linear-response theory and random-phase approximation (RPA)
for the dielectric function, which is valid only for the weak-coupling limit of electron
correlations, i.e. forrs < 1 (where rs is related to the densityn0 of the electron gas
by 1/n0 = 4

3π(rsa0)
3, wherea0 is the Bohr radius) [6, 7]. For metallic electron gases,

with rs ranging from 1.49 (Au) to 5.88 (Cs), the local-field correction (LFC) has been
introduced in the dielectric function to take into account the exchange interaction and
Coulomb correlations [8–15] at short range between electrons beyond the RPA, and this
has been found to enhance the stopping power [16–20] and the straggling [21, 22] in the
low-incident-velocity regime. The straggling involves a quadratic frequency moment, and
hence the straggling depends more strongly on frequency-dependent information from the
LFC than the stopping power. In the present paper, I make use of the dynamic LFC (DLFC)
in the dielectric function to calculate the energy-loss straggling of protons in metallic electron
gas, and investigate the effects of using the DLFC on the straggling. All of the results are
expressed in Hartree atomic units (e = h̄ = me = 1). The results are clarified whenever
other units are more expedient.
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2. Theory and results

In Lindhard’s linear-response theory, which treats the screened potential to lowest order,
and leads to energy losses proportional to the square of the ion charge, the energy-loss
straggling,�2, of an ion of chargeZ1 moving at the velocityv and traversing a path length
dx in a spatially homogeneous electron gas is given by [1, 2]

�2

dx
= 4πZ2

1

v2
n0L

L = 2

πω2
p

∫ ∞
0

dk

k

∫ kv

0
dω ω2 Im

[
− 1

ε(k, ω)

] (1)

whereε(k, ω) is the longitudinal dielectric function for the electron gas with the electronic
densityn0, andωp is the plasma frequency,ω2

p = 4πn0.
In generalized mean-field theory for an interacting electron gas, the dielectric function

is expressed as [8–15]

ε(k, ω) = 1− V (k)χ0(k, ω)/[1+ V (k)G(k, ω)χ0(k, ω)] (2)

whereG(k, ω) is the (complex) DLFC factor,χ0(k, ω) the linear density–density response
function of the noninteracting electron gas given in reference [1], andV (k) the Fourier
transform of the electron–electron bare Coulomb interaction,V (k) = 4π/k2. TheG(k, ω)
function describes the effects of short-range correlation between electrons beyond the RPA.
Neglecting its frequency dependence—that is, puttingG(k, ω) = G(k)—one gets the static
LFC (SLFC) function. The imaginary part ofG(k, ω) was proposed by Gross and Kohn
[23], for smallk-values, to be of the form

ImG(k→ 0, ω) = aω

[1+ bω2]5/4
a ∝ k2. (3)

Dabrowski [18] extended this representation by treating the parametersa andb for arbitrary
wavenumbersk; that is,

ImG(k, ω) = a(k)ω

[1+ b(k)ω2]5/4
. (4)

The real and imaginary parts ofG(k, ω) are related by the Kramers–Kronig relation [10,
24]

ReG(k, ω) = ReG(k, ω = ∞)+ P
∫ +∞
−∞

dω′

π

ImG(k, ω′)
ω′ − ω (5)

where P stands for the principal value. Using equation (5), the parametersa(k) and b(k)
are determined as

a(k) = Ck2b5/4(k) (6)

and

b(k) =
[

ReG(k, ω = 0)− ReG(k, ω = ∞)
CDk2

]4/3

(7)

whereC = 23
60(4/9π)

1/3rs , and

D = 2

π

∫ ∞
0

dξ (1+ ξ2)−5/4 ' 0.763.
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In equations (4), (6), and (7),k is in units of the Fermi wavenumberkf = (9π/4)1/3/rs ,
andω is in units of 2Ef (Ef = k2

f /2 is the free-electron Fermi energy). From theω3-sum
rule, ReG(k, ω = ∞) is derived as [25]

ReG(k, ω = ∞) = I (k)− 2k2

ω2
p

(〈Ekin〉 − 〈Ekin〉0) (8)

where〈Ekin〉 and 〈Ekin〉0 are the expectation values of the kinetic energy per particle for
the interacting and noninteracting systems, respectively, andI (k) is defined as

I (k) = − 1

N

∑
q (6=k,0)

[
k · q
q2
+ k · (k − q)|k − q|2

]
k · q
k2

[S(|k − q|)− 1]. (9)

In equation (9),N is the total number of electrons in the system, andS(k) is the static form
factor given in equation (2.9b) of reference [25].I (k) can be written in a form suitable for
numerical computation as (see also reference [26])

I (k) = − 1

4π2n0

∫ ∞
0

dq q2[S(q)− 1]

[
5

6
− q2

2k2
+ (q

2− k2)2

4qk3
ln

∣∣∣∣q + kq − k
∣∣∣∣]. (10)

For ReG(k, ω = 0), we exploit the SLFC factor given in reference [27], which is an
improvement on the SLFC factor proposed by Utsumi and Ichimaru [13] for large wave-
numbers.

Figure 1. Predictions of the linear-response theory for�/(dx1/2 v) for protons in an electron
gas with the density specified byrs , which is determined by using the DLFC (solid curve),
SLFC (chain curve), and RPA (short-dashed curve), respectively.

For low velocities of protonsv � vf (vf is the free-electron Fermi velocity), by making
a low-frequency-limit approximation, we find (see the appendix)

�2

dx
= 8χ2E2

f C2(rs)

(
v

vf

)2

(11)

whereχ2 is defined asχ2 = (4/9π)1/3(1/π)rs ≈ 0.166rs andC2(rs) is given in equation
(A4) of the appendix. Figure 1 shows the variation of�/(dx1/2 v) for protons withrs . The
results for�/(dx1/2 v) based on the DLFC are apparently larger than those based on the
SLFC in the low-velocity limit. Similarly, obvious increases over the SLFC predictions
were also found for the stopping power [18]. For comparison, the predictions of density-
functional theory (see also reference [28]), in which the screened potential is determined
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Figure 2. Comparison of the theoretical predictions for�/(dx1/2 v) based on linear-response
theory and the DLFC (solid curve) with those of the density-functional theory (dashed curve)
for a proton in an electron gas. Empty triangles represent experimental data as quoted in
reference [28].

Figure 3. �/dx1/2 for protons in an electron gas withrs = 1 calculated from equation (1)
using the DLFC (solid curve), SLFC (chain curve), and RPA (short-dashed curve), respectively.
�/dx1/2 in the low-velocity limit determined from equation (11) using the DLFC is represented
by a long-dashed line.

self-consistently to all orders inZ1, and the straggling obtained includes full nonlinear
effects, are exhibited in figure 2. The nonlinear results for the straggling of protons are very
close to the linear-response results based on the DLFC for the rangers . 2. For rs > 3,
the nonlinear results are much lower than the linear ones. As shown in reference [29],
at low electronic densities the nonlinear effects become important, and cause significant
reduction in the stopping power and the straggling. Figure 2 also shows some experimental
data [30] for the low-velocity range. Comparison of these experimental data with our
calculation results makes it apparent that they agree quite well for some cases but differ
for others. As pointed out in references [4, 28, 31], there are large discrepancies, not
only between experimental data and theoretical predictions, but also between the different
measurements for energy-loss straggling reported so far; the film thickness nonuniformity,
and large crystallites frequently yield additional contributions to the energy-loss straggling,
and make it difficult to compare the experimental results and the theoretical ones.
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Figure 4. As figure 3, but forrs = 2.

Figure 5. As figure 3, but forrs = 5.

In order to show the differences among the DLFC, SLFC, and RPA dielectric theories
over a wider velocity range, the electronic energy-loss straggling for protons in a uniform
electron gas withrs = 1, 2, and 5 is calculated by using these three dielectric functions,
and integrating equation (1) numerically; the corresponding numerical results are plotted in
figures 3–5. For very low velocities, the straggling determined from the DLFC is higher
than that from the SLFC, but as the incident velocity increases, the former becomes lower
than the latter. This is because the real part of the DLFC factor, ReG(k, ω), decreases
with the frequencyω (see equation (5)), and its contribution to the straggling is less than
that obtained from the SLFC (see equations (1) and (2)). Furthermore, when the projectile
velocity increases to some extent (for example,v > 3 for rs = 1, v > 1.5 for rs = 2, and
v > 0.7 for rs = 5), the results for the straggling based on the LFC (both DLFC and SLFC)
become slightly lower than that based on the RPA. This characteristic of the straggling is
unlike that of the stopping power [16, 19]. For high velocities of protons,v � vf , one can
use the plasmon-pole approximation to the dielectric function [32–34, 16], and derive (see
the appendix)

�2

dx
≈ 16

3
χ2E2

f

[
1+

(
β ′2

v2
f

+ ωp

2Ef

)(
vf

v

)2

ln
v

vf

]
(12)
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where

β ′2 = 3

5
v2
f − γ

ω2
p

k2
f

.

By using equation (12) and noting thatγ = 0 for the RPA, it is found that, for higher
velocities, the straggling based on the LFC is slightly lower than that based on the RPA.
However, for very high velocities,(vf /v)2 ln[v/vf ] approaches zero, and these two results
are both consistent with the Bohr theory result�2

B/dx = 16
3 χ

2E2
f [35].

In conclusion, we have evaluated the energy-loss straggling by using the linear-response
theory and the DLFC dielectric function, and investigated the effects of using the DLFC on
the straggling. The results based on the DLFC differ significantly from the predictions of the
RPA and SLFC dielectric theories. It has been found that for higher densities,rs < 2, the
linear straggling based on the DLFC coincides well with the nonlinear one. Comparisons
have been made with some of the limited, existing experimental data for the low-velocity
regime, but, clearly, more accurate data are needed.
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Appendix

On introducing the dimensionless variablesz = k/2kf and u = ω/kvf , χ0(k, ω) can be
expressed, in terms ofz andu, as

χ0(z, u) = − 1

π3χ2
[f1(z, u)+ if2(z, u)] (A1)

wheref1(z, u) and f2(z, u) are given in reference [1]. For very low velocitiesv � vf ,
u 6 v/vf � 1, by making a low-frequency-limit approximation:

f1(z, u) ≈ f1(z, 0)

f2(z, u) = πu/2
(A2)

we have

L = 3EfC2(rs)

(
v

vf

)4

(A3)

and

C2(rs) =
∫ 1

0

z4 dz

{z2+ χ2[1−G(z)]f1(z)}2+
4

π
χ2
∫ ∞

0

a(z)f 2
1 (z)z

3 dz

{z2+ χ2[1−G(z)]f1(z)}2 (A4)

wheref1(z) = f1(z, 0), andG(z) = G(z, 0). For the RPA and the SLFC, the second term
on the right-hand side of equation (A4) vanishes. Then, by taking the long-wavelength-limit
approximationf1(z, 0) = 1− z2/3 andG(z) = 4γ0z

2, the analytical expressions forC2(rs)

are obtained as

C2(rs) =
(

1− 1

3
ηχ2

)−2

×


1+ t0

2(1+ t0) −
3

2

√
t0 arctan

1√
t0

if t0 > 0

1+ t0

2(1+ t0) −
3

4

√
|t0| ln

∣∣∣∣1+√|t0|1−√|t0|

∣∣∣∣ if t0 < 0

(A5)
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C2(rs) = 1/5χ4 if t0 = 0 (A6)

wheret0 is defined ast0 = χ2/(1− 1
3ηχ

2) with η = 1+ 12γ0.
For high velocitiesv � vf , we can employ the plasmon-pole approximation to the

dielectric function [32–34, 16]:

ε(k, ω) = 1+ ω2
p

ω2
p + β2k2+ (k2/2)2− ω(ω + iδ)

(A7)

whereβ2 = 3
5v

2
f , andδ is an infinitesimally small positive quantity. Noticing that equation

(A7) corresponds to the RPA, and applying the long-wavelength approximation to the LFC
factor, it is found that the LFC dielectric function with the plasmon-pole approximation can
also be expressed by equation (A7) ifβ2 is simply replaced byβ ′2 = β2− γω2

p/k
2
f , where

γ =
{
γ0 (SLFC)

G(k, ω = ωp)/(k/kf )2|k→0 (DLFC).
(A8)

For δ→ 0, we get

Im
−1

ε(k, ω)
≈ πω2

p

2ωk
[δ(ω − ωk)− δ(ω + ωk)] (A9)

with ω2
k = ω2

p + β ′2k2+ (k2/2)2. By the use of equation (1), it follows that

L =
∫ kmax

kmin

ωk

k
dk = Ef

2

∫ kmax

kmin

√
(ωp/Ef )2+ 4(β ′2/v2

f )(k/kf )
2+ (k/kf )4

(k/kf )2
d[(k/kf )

2].

(A10)

Finally, we get an analytical result:

L =
{√

a + b(k/kf )2+ (k/kf )4

− √a ln

[
2a + b(k/kf )2+ 2

√
a
√
a + b(k/kf )2+ (k/kf )4

]
(k/kf )2

+ b

2
ln

[
2
√
a + b(k/kf )2+ (k/kf )4+ 2(k/kf )

2+ b
]}∣∣∣∣k=kmax

k=kmin
(A11)

where

a = (ωp/Ef )2 b = 4β ′2/v2
f (A12)

and (
k2
max

k2
min

)
=
(
v2− β ′2
v2

±
√(

v2− β ′2
v2

)2

−
(
ωp

v2

)2)/
(1/
√

2v)2. (A13)

By expanding equation (A11) as a series, and retaining the leading terms down to the order
(vf /v)

4, one finds

L

(Ef /2)
= 4(v/vf )

2+ 2A ln
v

vf
+ [(3 ln 2− 1)A− A lnA] − 3

8
A2(vf /v)

2

− 5

64
A3(vf /v)

4+ · · · (A14)

whereA = 2β ′2/v2
f + ωp/Ef .
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